TECH5 系列装配手册

宁波弘讯科技股份有限公司

宁波北仑大港五路 88 号 电话: 86-574-86987281 传真: 86-574-86829287

E-mail: technb@techmation.com.cn

目 录

— ,	TECH5 系列使用规范	. 1
二、	开关电源	. 2
2. 1.	开关电源	. 2
2. 2.	开关电源使用注意事项	. 5
三、	面板	. 6
3. 1.	一体铝壳 Q8 面板尺寸	. 6
3. 2.	三段铝壳 Q8A 面板尺寸	. 8
3. 3.	一体铝壳 Q12 面板尺寸	10
3. 4.	三段铝壳 Q12A 面板尺寸	12
3. 5.	铝壳面板接线方式	14
3. 6.	操作面板安装注意事项	15
四、	主机规格	16
4. 1.	主机规格图	16
4.	1.1. TECH530/TECH530A 主机规格图	16
4.	1.2. TECH530C 主机规格图	17
4.	1.3. TECH530S 主机规格图	18
4.	1.4. TECH580 主机规格图	19
4. 2.	主机安装尺寸图	20
4.	2.1. TECH530 系列主机安装尺寸图	20
4.	2.2. TECH580 主机安装尺寸图	21
4. 3.	配件安装尺寸图	22
4.	3.1. SPV 安装尺寸图	22
4.	3. 2. EXDI088 / EXDI088R 安装尺寸图	23
五、	主机装配	24
5. 1.	通讯接口	24
5.	1.1 NET 接口	24
5.	1.2 CAN 接口	24
5. 2.	限位开关输入装配	26
5. 3.	位置尺输入装配	27
5. 4.	方向阀输出装配	28
5. 5.	比例阀输出装配	29
5. 6.	感温线输入装配	31
5.	6.1. TECH530 感温线装配	31
5.	6. 2. TECH580 感温线装配	31

5. 7.	温度控制输出装配	32
5.	7.1. TECH530 温度控制装配	32
5.	7.2. TECH580 温度控制装配	34
5. 8.	继电器控制输出装配	35
5.	8.1. TECH530 继电器控制装配	35
5.	8.2. TECH530 马达直接启动装配	36
六、	CAN 扩展模块	37
6. 1.	TMIoT_i101 与 TMIoT_i102	37
6.	1.1. tmIoT_i101 与 tmIoT_i102 安装尺寸	37
6.	1.2. tmIoT_i101 与 tmIoT_i102 装配	39
6. 2.	RMTP12	45
6.	2.1. RMTP12 安装尺寸	45
6.	2. 2. RMTP12 装配	46
七、	系统附图	. 1

一、 TECH5 系列使用规范

TECH5 系列(TECH530/TECH580)电控系统是装配简单、功能齐全的注塑机控制系统。请在安装和使用前务必阅读并了解本规范要求,以免一些错误的操作导致严重的后果。具体规范要求如下:

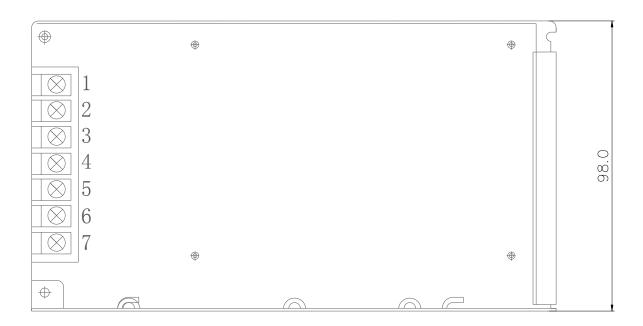
- 1. 电控箱内部环境温度以 0 ℃~50 ℃为基准。若工作温度过高,则会降低其工作可靠度,缩短其使用寿命,影响位置尺控制精度。因此需要在电控箱上加装风扇,风扇位置以靠近系统开关电源或固态继电器为佳。
- 2. 部分开关电源输入电压范围需要拨码选择 230V 或 115V, 拨码开关位于电源侧面,请在开电前确认电压选择开关是否和实际输入电压相符,防止电压不匹配导致产品损坏。
- 3. 开关电源外壳会有轻微漏电,因此必需强制要求采取接地配线措施。为提高接地效果,必须使用接地铜块。
- 4. 标准接近开关规格应以三线 NPN 型为准,并使用系统 H24V、HCOM 电源。
- 5. 电控系统配线过程中,要求尽量强弱电分开走线,避免相互干扰,影响系统稳定性。
- 6. 面板记忆电池(CR2032)寿命为3-5年,且面板自带电量检测功能,会有"电池电量低" 提醒,为避免数据丢失,请及时更换。
- 7. 方向阀输出接点严禁单点推动2支或2支以上的电磁阀。
- 8. 比例输出系统一般分为电压型和电流型。
- 9. 位置尺装配(含电线)应避免油渍污染,以免造成位移传感器内部接触不良或电线硬化折断破皮。
- 10. 感温电路温度传感器要求使用 K 型或 J 型热电偶, 装配时感温线尽量不要和强电走线捆在一起走线, 建议进行屏蔽保护, 以免影响温度稳定性及精确性。
- 11. 加热控制部分可使用交流接触器或固态继电器。当机器上使用交流接触器时,请务必在交流接触器线圈端并接一个突波吸收器。使用固态继电器时,需保证固态继电器散热座温度不得超过65℃,固态继电器不得连续使用超过5分钟。
- 12. 保护固态继电器的保险丝应按照规格使用:
 - (1) 电流 10A 以下(含 10A): 使用 10A 保险丝。
 - (2) 电流 10A 以上, 20A 以下(含 20A): 使用 20A 保险丝。
 - (3) 电流 20A 以上: 依大小另购保险丝。
- 13. 装配完成后请检查电控系统线路是否有和机器外壳短接,避免电控系统相关回路电线破皮 (除感温线)引起的短路。
- 14. 警报灯装配位置应距面板 20cm 以上, 距主机板 40cm 以上。
- 15. 操作面板上配有 LED 液晶显示器,安装和使用时需注意切勿碰撞。
- 16. 操作面板表面的薄膜, 严禁使用高挥发性物质(如汽油)擦拭, 污迹可使用煤油或蜡(最佳)清除。
- 17. 当您在安装配电盘时,请使用金属板。假如需要使用胶木板,请务必保证电控系统接地良好,以避免漏电和静电干扰损坏电路。电控箱内主机板,应绝对禁止水或油的侵蚀污染。
- 18. 电控系统内元器件含有重金属,报废后必须将电控系统作为工业废物处理,否则可能造成人身伤害和环境污染。

本规范要求配合以下装配手册,您的正确使用,可以有效延长设备的使用寿命。

二、开关电源

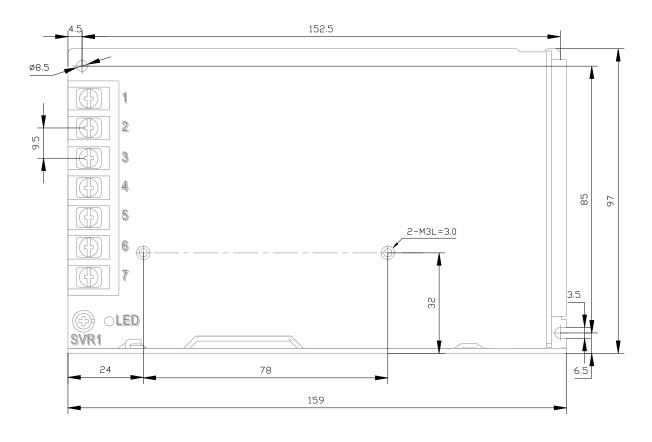
本系统使用两组开关电源(A电源、B电源):

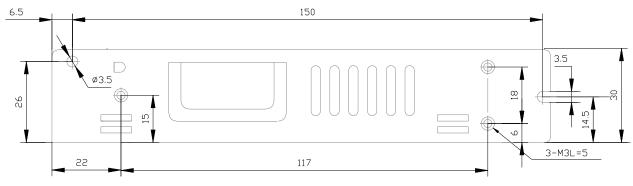
a) A 电源: 一般为电控系统供电电源,提供系统正常运行使用。

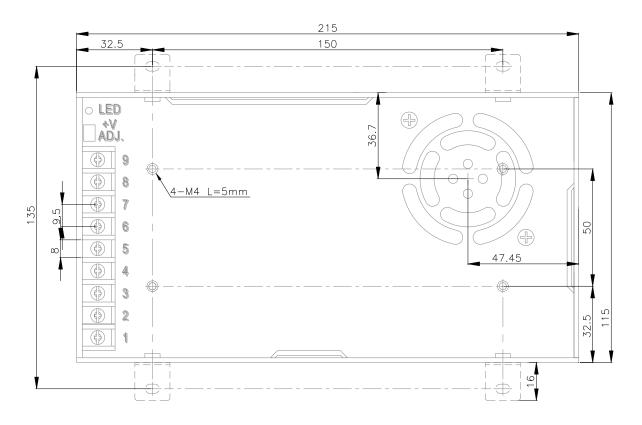

负载分配:面板供电、主机系统供电、SPV卡供电、电力计供电、RMTP12温度控制卡供电、tmIoT扩展卡系统供电、驱动器(单个驱动器,多个驱动器请使用独立电源供电)。

b) B 电源: 一般为电控输入输出部分电源。

负载分配: 主机底板输入输出供电、主机顶板输入输出供电、tmIoT扩展卡输入输出供电。

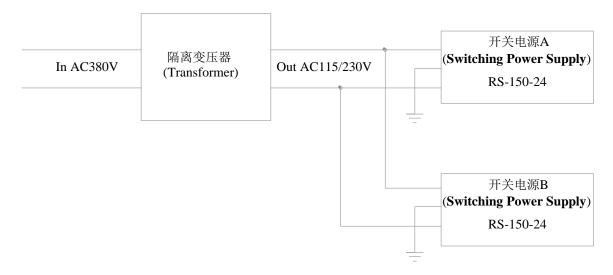

2.1. 开关电源


RS-150 系列



LRS-150 系列

LRS-350 系列

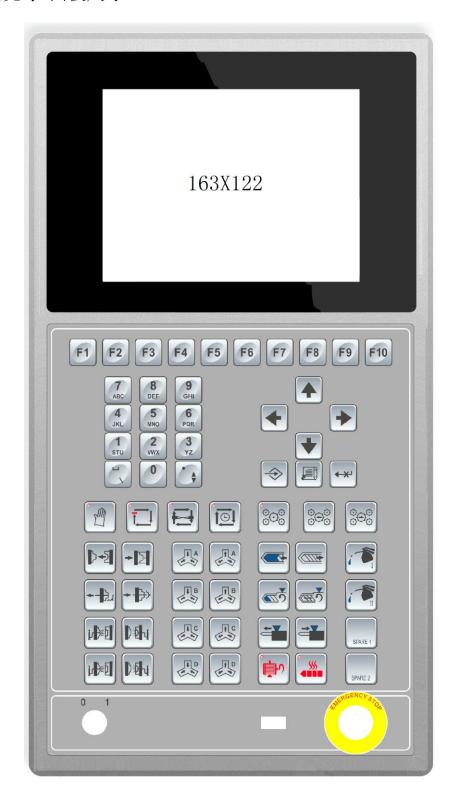


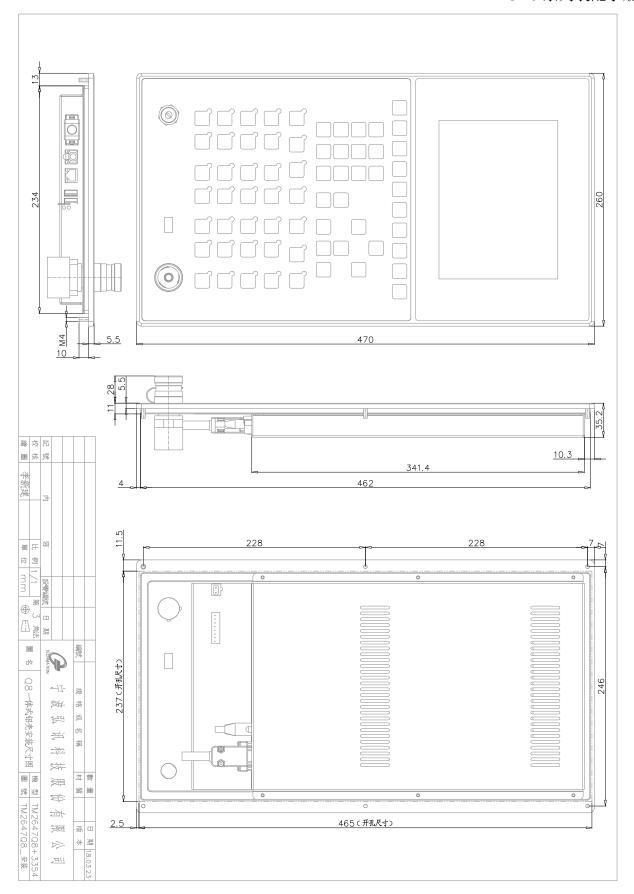
2.2. 开关电源使用注意事项

开关电源的输入端推荐加入:

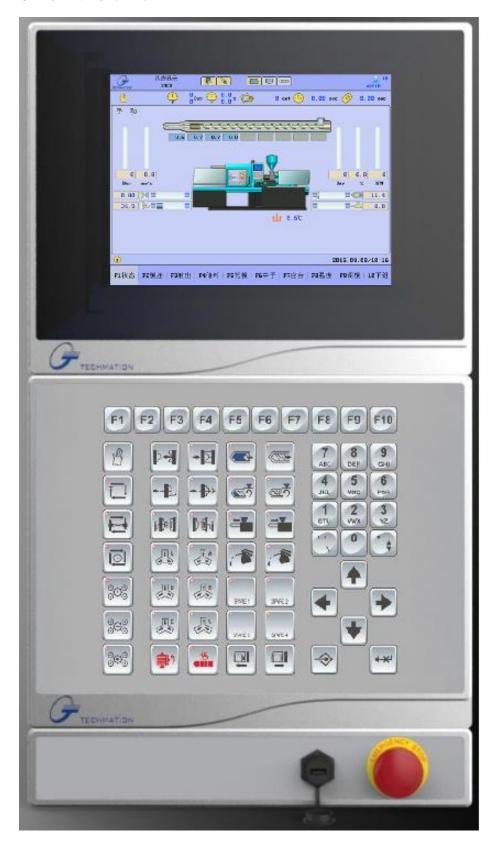
a. 隔离变压器:输入电压可用多种输入电压单一输出电压以防止电源干扰,接线方式如下:

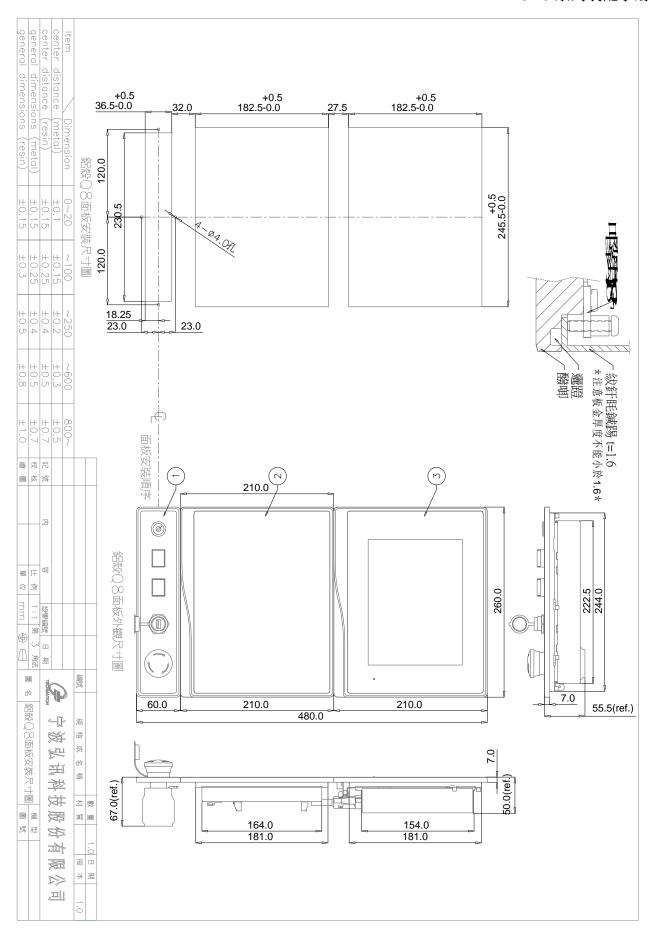
开关电源的输入电压范围形式:


拨码选择输入: 需根据现场输入电压选择正确拨码位置, 否则会由于输入电压不匹配导致开关电源损坏。

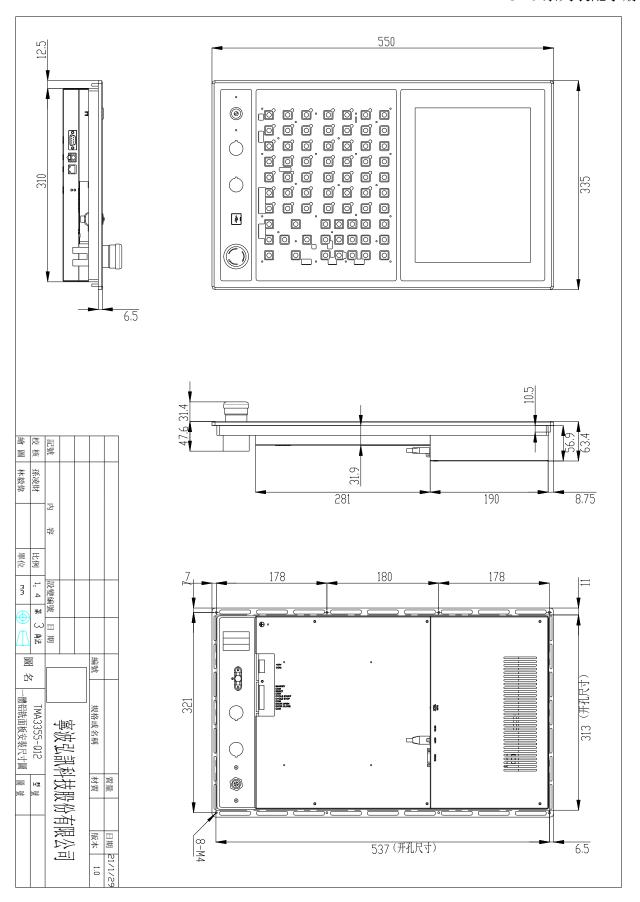

开关电源的 FG 或 🚢 端子须做接地处理:

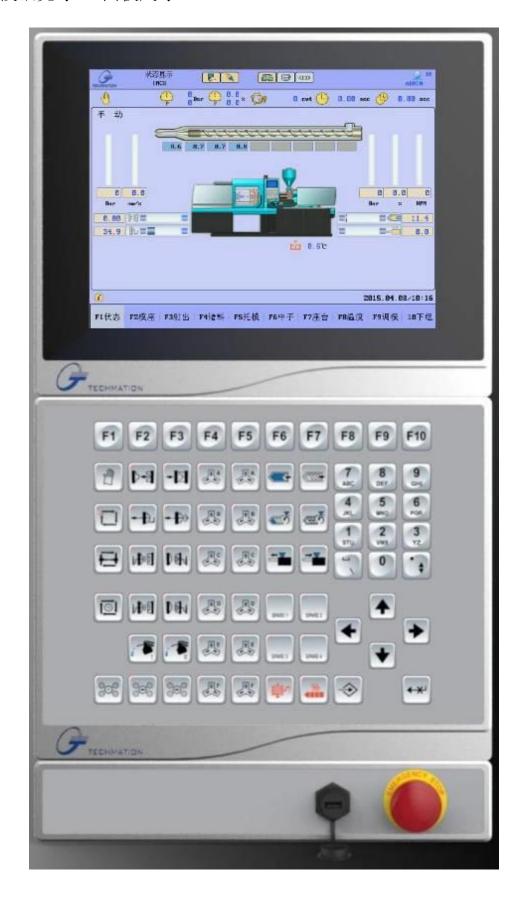
因开关电源会有轻微漏电,会干扰系统运作,因此请务必在配线和用户使用时接地。

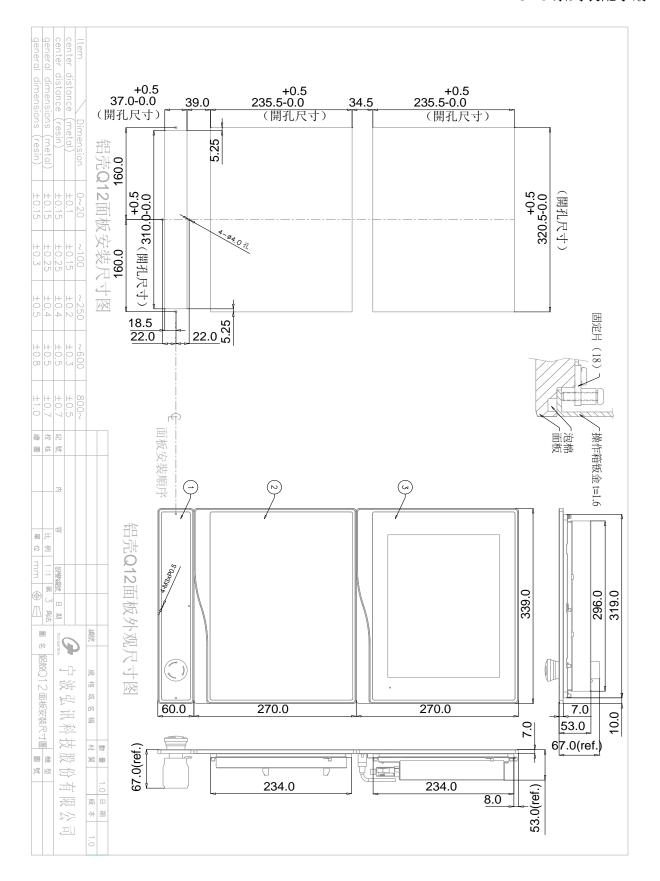

三、面板


3.1. 一体铝壳 Q8 面板尺寸

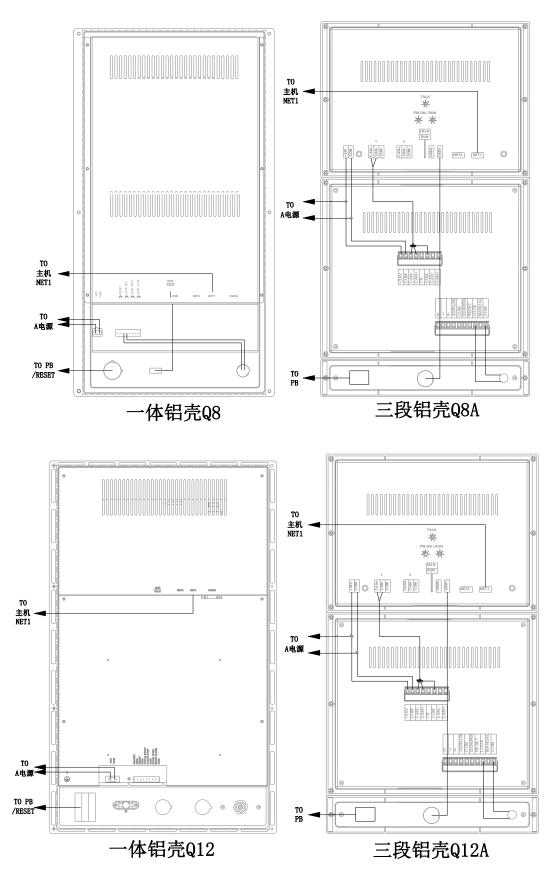
3. 2. 三段铝壳 Q8A 面板尺寸



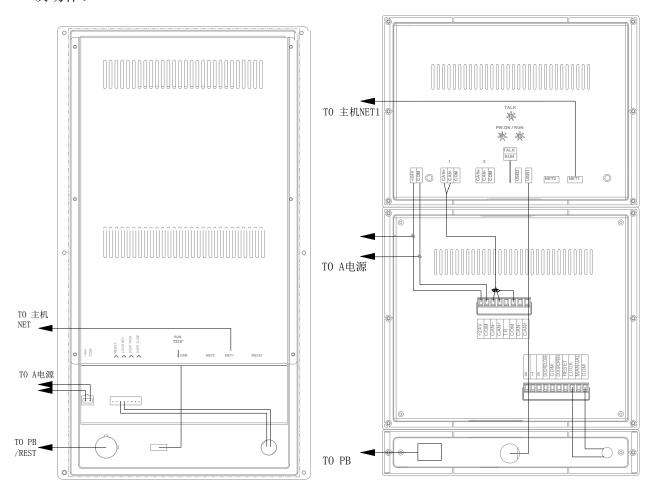

3.3. 一体铝壳 Q12 面板尺寸



10

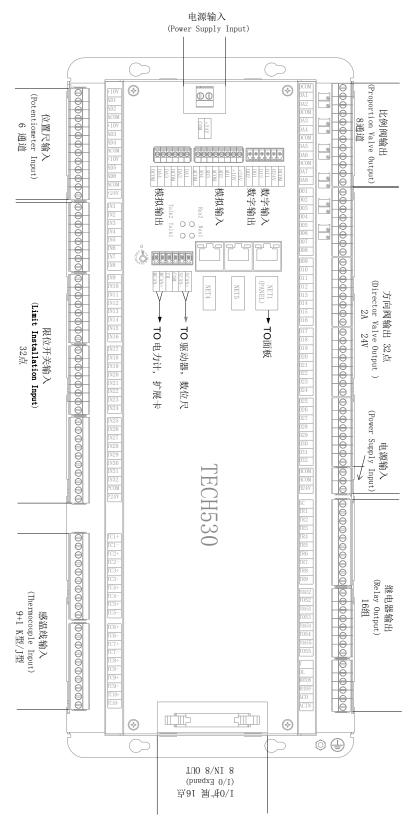


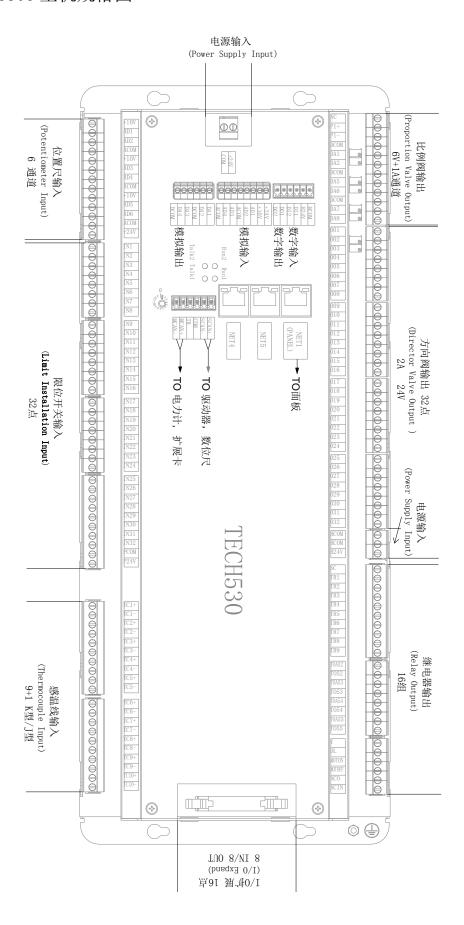
3. 4. 三段铝壳 Q12A 面板尺寸


3.5. 铝壳面板接线方式

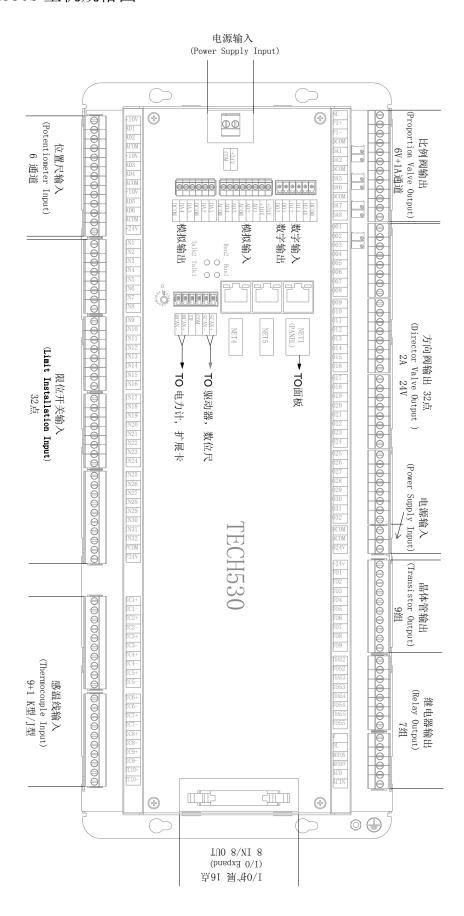
备注:一体 Q8&Q12 铝壳面板急停有接主机 PB 点和 HMI RESET 两种,实际接线时以实物为准。

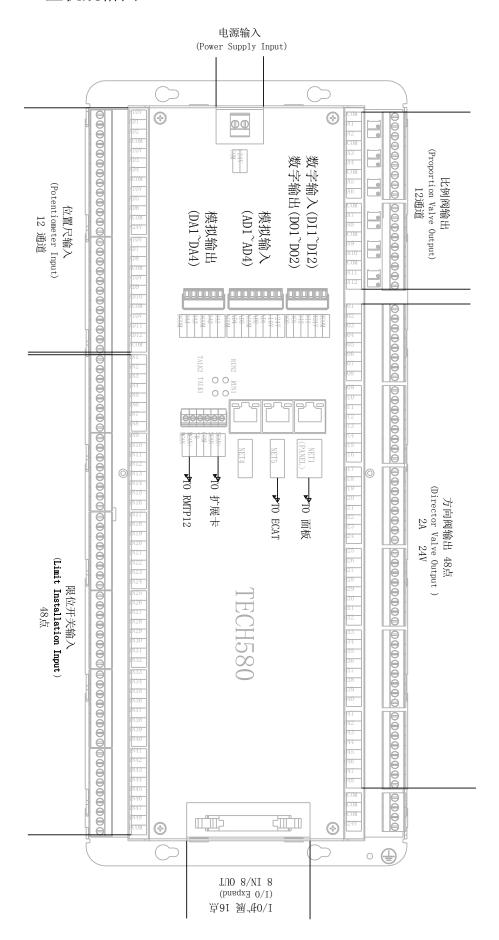
3.6. 操作面板安装注意事项


- 1. 我司标准面板厚度为8cm,考虑通讯线弯折、散热、防尘等要求,建议操作箱最小深度为12cm。
- 2. 操作箱钣金厚度不能小于 1.6mm。
- 3. 一体式面板连接电源至按键部分对应电源端子。
- 4. 三段式面板需将电源分别接至显示及操作部分,两者之间通过 CAN 连接通讯。
- 5. 安装面板须从面板后盖上拉一条接地线到电器箱内接地,防止机台漏电导致面板故障或 误动作。

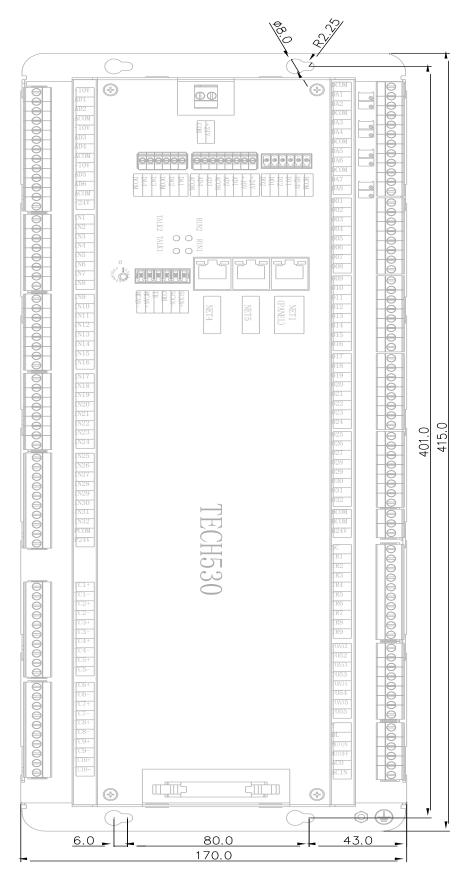

四、主机规格

4.1. 主机规格图

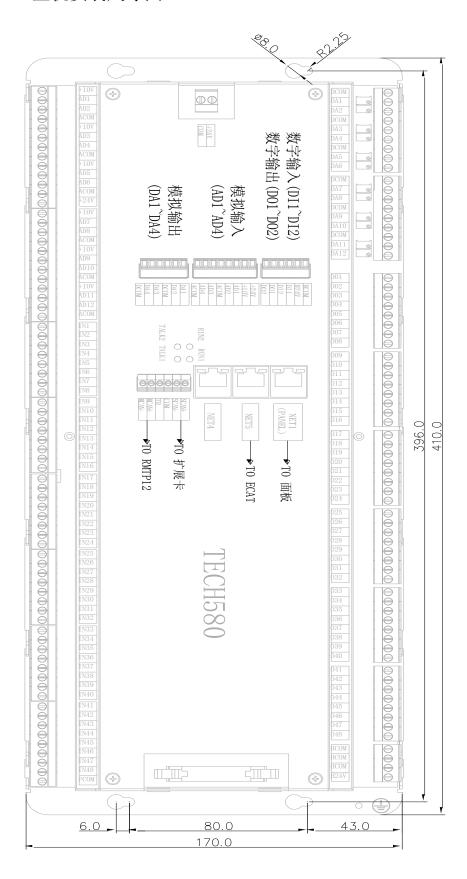

4.1.1. TECH530/TECH530A 主机规格图


4.1.2. TECH530C 主机规格图

4.1.3. TECH530S 主机规格图

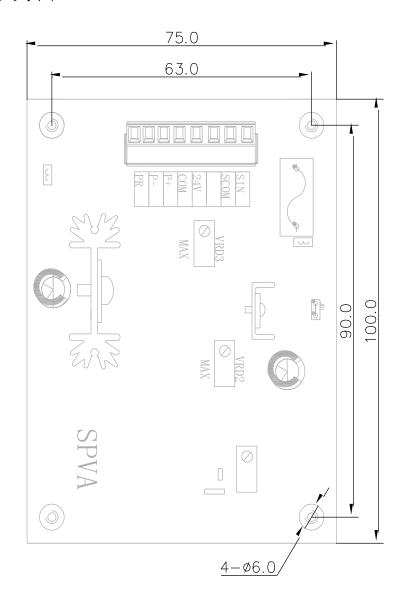


4.1.4. TECH580 主机规格图

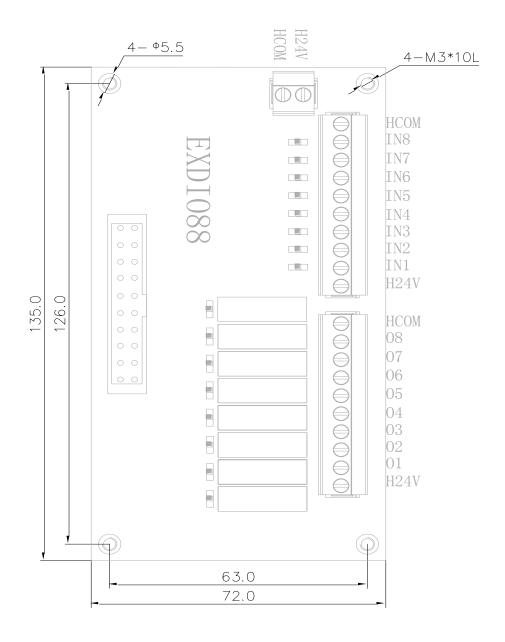


4.2. 主机安装尺寸图

4.2.1. TECH530 系列主机安装尺寸图



4.2.2. TECH580 主机安装尺寸图



4.3. 配件安装尺寸图

4.3.1. SPV 安装尺寸图

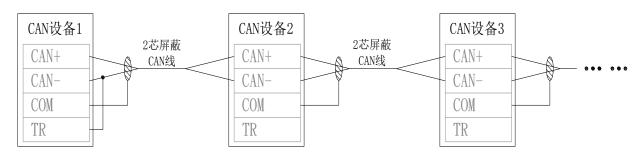
4.3.2. EXDI088 / EXDI088R 安装尺寸图

五、 主机装配

5.1. 通讯接口

5.1.1 NET 接口

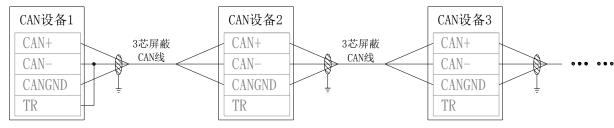
TECH5 系统提供 1 组 5502 及 2 组 28335 EtherNET 接口,可接于 HMI 面板扩展及调试治具连接。


5.1.2 CAN 接口

TECH530 系统/TECH580 系统均提供 2 组 CANBus 控制,可接到 RMTP12、I0 扩展卡、数位尺、电力计、AUSTONE&DE688 驱动器等 CAN 设备。其中 MCAN 终端电阻启用方式:打开钣金,将 MCAN 旁的短接跳针使用短接帽短接,即启用终端电阻,默认启用;SCAN 终端电阻启用方式:将端子上的 SCAN-与 TR 短接,即启用终端电阻。

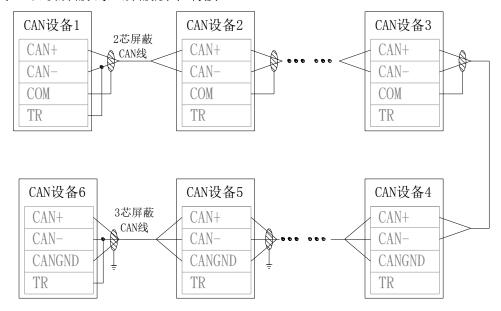
系统产品有隔离 CAN 和非隔离 CAN 两个版本,前期产品为非隔离 CAN,与系统共用参考地 COM,最新产品为隔离 CAN,CAN 模块独立参考地 CANGND。为防止干扰,接线时注意 CAN+/CNA-旁的参考地丝印 COM 或 CANGND,选择对应接线处理,建议配线如下:

1. 当系统中多个设备 CAN 接口均为 COM 时, CAN 串联通讯使用 2 芯双绞带屏蔽 CAN 线, 屏蔽层单端接 COM, 且 COM 不与外壳导通;


接线示意图如下图所示:

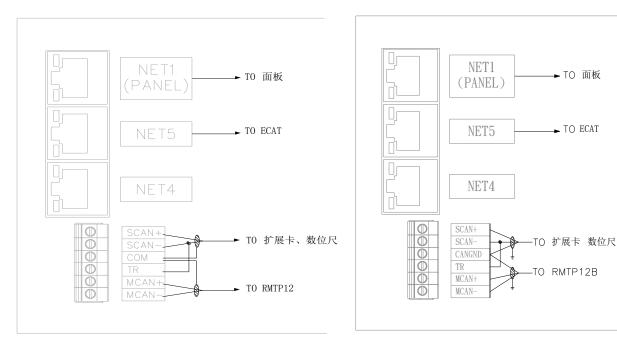
备注: 1. 通讯CAN线使用2芯带屏蔽层双绞通讯线;

- 2. 接线要求首端和末端设备接终端电阻,中间设备无终端电阻。
- 2. 当系统中多个设备 CAN 接口均为 CANGND 时, CAN 串联通讯使用 3 芯带屏蔽 CAN 线,各设备 CANGND 通过 3 芯线串联在一起,屏蔽层单端接地;


接线示意图如下图所示:

备注: 1. 通讯CAN线使用3芯带屏蔽层通讯线,且CAN+与CAN-使用一组双绞线;

2. 接线要求首端和末端设备接终端电阻,中间设备无终端电阻。

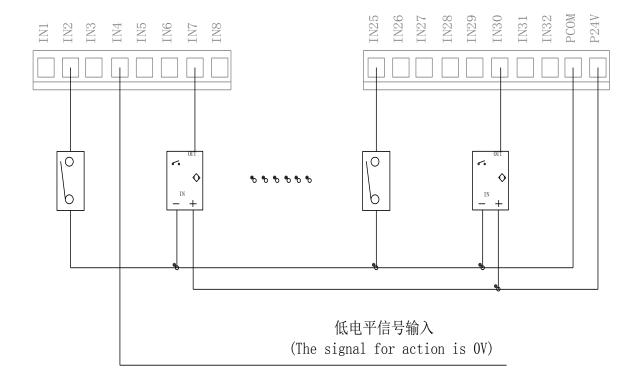

3. 当系统中多个设备 CAN 接口同时有 COM 和 CANGND 时,COM 接口设备与 CANGND 接口设备间使用两芯双绞屏蔽线,屏蔽层单端接 COM。

备注: 1. 非隔离CAN设备间使用2芯带屏蔽层双绞通讯线;

- 2. 隔离CAN设备间使用3芯带屏蔽层双绞通讯线;
- 3. 非隔离CAN设备与隔离CAN设备间使用2芯带屏蔽层双绞通讯线;
- 4. 接线要求首端和末端设备接终端电阻,中间设备无终端电阻。

以 TECH530 为例:

TECH530 (非隔离 CAN)

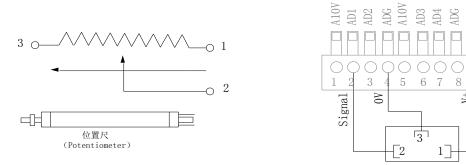

TECH530A/TECH530C/TECH530S(隔离CAN)

5.2. 限位开关输入装配

TECH530 系统提供 32 点数字输入/ TECH580 系统提供 48 点数字输入,使用 NPN 型限位开关,所有公共端需接入 PCOM,当限位开关动作时 PCOM 即输入信号,即低电平有效。

限位开关输入端子上的 PCOM、P24V 为输出电源共享点,具有过流保护设计,供负载接线使用,非电源输入接点。

以 TECH530 为例:



5.3. 位置尺输入装配

TECH530 主板上的 CNA1 为位置尺输入点/ TECH580 主板上的 CNA1、CNA2 为位置尺输入点,均为 16bit 高速模拟输入通道,可配合电位式位置尺输入 $(0^{\sim}10V)$ 信号。 TECH530 主板可控制 6 支尺/ TECH580 主板可控制 12 支尺,分别为射出,开关模,托模等。

以 TECH530 为例:

在主板位置尺输入端子上有 13P 插头供电子尺连接使用,接线脚位如上图所示,第 2,3,6,7,10,11 脚为信号输入脚须接位置尺的信号输出脚,并将隔离网接到位置尺的第 4 or 8 or 12 脚。一般而言,位置尺伸长为最大值缩回为最小值,如方向相反,可将位置尺插头 1,4 脚对换即可,即正负 (+, -) 极对换,即可改变方向,切记信号脚(Signal)不可插错,否则可能导致主机板或电子尺烧毁。

电子尺的校正与归零,请参考操作手册。

电子尺的长度选用比机械行程长,以免遭扯断。

10 11 12 13

5.4. 方向阀输出装配

TECH530 系统提供 32 点 DC24V 方向阀控制/TECH580 系统提供 48 点 DC24V 方向阀控制,单点输出最大电流为 2A,但不建议一个输出点接两支电磁阀,如需并接请以中间继电器控制。方向阀控制输出共享点为 H24V ,即低电平有效。本线路具有短路保护设计,如因接错线或负载太大而等到电流过大时会自动断电,而不致于烧毁晶体管,且于故障排除后,重新开电,即可正常动作。

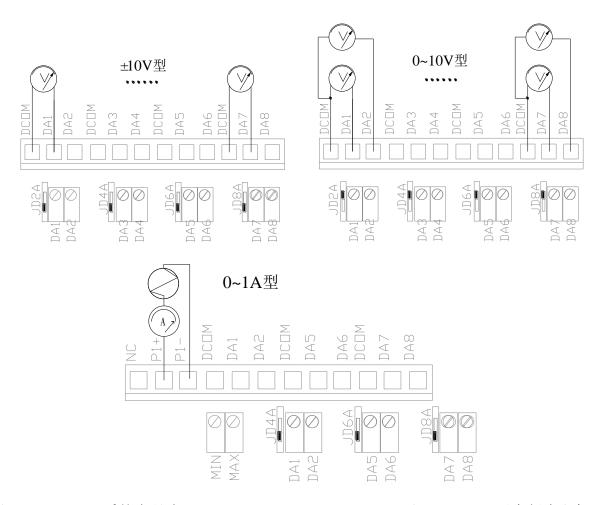
本系统方向阀控制均为晶体管形式,如需控制强电接触器请接继电器输出部分。

主机输入输出电源接线,TECH530 系统提供 2 个 HCOM 接点/TECH580 系统提供 3 个 HCOM 接点,每个 HCOM 接点可负载 15A 电流回流。

如果同时开阀功率大于300W,建议两个HCOM接点均需接线。

如果 TECH580 系统同时开阀功率大于 600W, 建议三个 HCOM 接点均需接线。

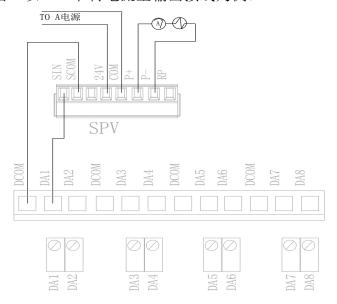
以 TECH530 为例:



5.5. 比例阀输出装配

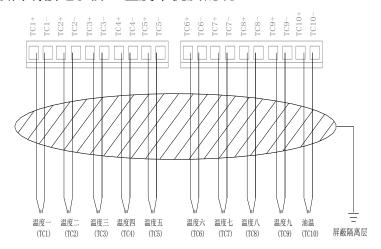
TECH530 主板上的 CND1 为比例阀输出点、TECH580 主板上的 CND1、CND2 为比例阀输出点,TECH530 主板、TECH530A 和 TECH530S 主板提供 8 个模拟输出通道、TECH530C 主板提供 7 个模拟输出通道、TECH530A 和 TECH530S 主板提供 7 个模拟输出通道、TECH530A 和 TECH530S 提供 8 组 12Bit DA 0^{\sim} 10V 电压输出 or 4 组 ± 10V 电压输出;TECH530C 提供 6 组 12Bit DA 0^{\sim} 10V 电压输出 or 3 组 ± 10V 电压输出+1 组 0^{\sim} 1A 电流输出;TECH580 提供 12 组 12Bit DA 0^{\sim} 10V 电压输出 or 0^{\sim} 10V 电压输出 e压输出 e压输出 e压输出 e压输出 e压输出 e压输出 eLE输出 eLEmpth eL

下图中 DA1~DA12, 分别为对应通道归零校正电位器。


以 TECH530A 电压型输出和 TECH530C 的电流型接线为例:

备注:1. TECH530 系统产品有 TECH530、TECH530A、TECH530C 和 TECH530S 四个版本主机。

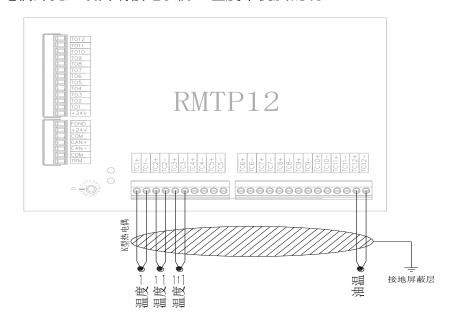
- 2. TECH530 主机无±10V 拨码选择开关,如需±10V 版本主机需联系我司业务修改更换。
- 3. TECH530A、TECH530C 和 TECH530S 主机设置有±10V 拨码选择开关,其中 TECH530A 和 TECH530S 中 JD2A、JD4A、JD6A 和 JD8A 分别拨码至上左图位置时,一一对应通道 DA1、DA3、DA5 和 DA7 分别输出±10V; TECH530C 当 JD2A、JD6A 和 JD8 分别拨码至上左图位置时,一一对应通道 DA1、DA5 和 DA7 分别输出±10V。


TECH530、TECH530A、TECH530S 和 TECH580 主机无电流型通道输出,接电流型阀时,需电压输出转换成电流输出。以 SPV 卡转电流型输出接线为例:

5.6. 感温线输入装配

5.6.1. TECH530 感温线装配

- 1. TC10 为油温, 须照正(+)、负(-)极性接上 TC1-TC9 分别为 1-9 段感温线。
- 2. 感温线布线必须与动力线等强电线分开,以免干扰造成温度不准、乱跳。
- 3. 感温线请勿经过转接,防止因转接影响温度准确性。
- 4. 热电偶外壳必须两端接地以防止温度干扰及乱跳。


5.6.2. TECH580 感温线装配

TECH580 系统温度模块采用与主机分离式结构,通过 CAN 进行通讯连接。感温线必须接于温度模块端子台,TC12 为油温,须照正(+)、负(-)极性接上 TC1-TC11 分别为 1-11 段感温线。

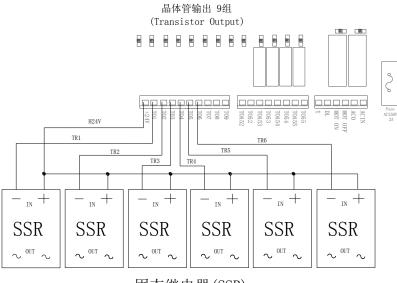
感温线布线必须与动力线等强电线分开,以免干扰造成温度不准、乱跳。

感温线请勿经过转接, 防止因转接影响温度准确性。

接地型热电偶外壳必须两端接地以防止温度干扰及乱跳。

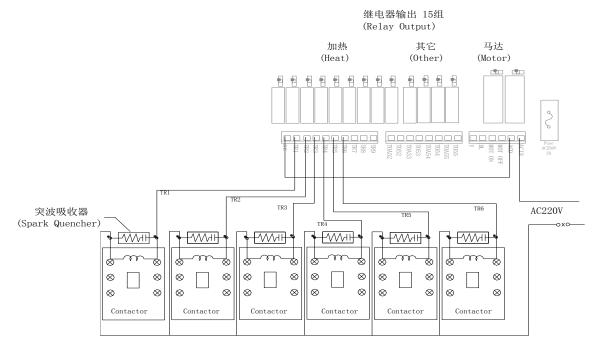
5.7. 温度控制输出装配

5.7.1. TECH530 温度控制装配


TECH530、TECH530A 和 TECH530C 主机加温控制可使用固态继电器或交流接触器两种方式, TECH530S 主机只能使用固态继电器方式。

5.7.1.1. 固态继电器

TECH530、TECH530A 和 TECH530C 主机使用固态继电器作为加热控制,可直接由主机上继电器控制接触器,TECH530S 直接使用固态继电器,需注意固态继电器分 AC 端与 DC 端,其中 DC 端有正负极性分别。(以六组输出为例)

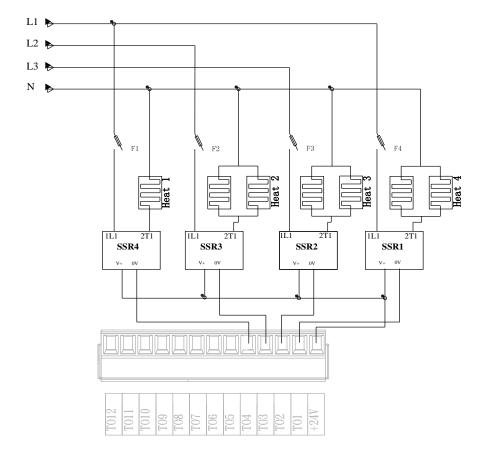

TECH530、TECH530A和TECH530C

固态继电器(SSR) TECH530S

5.7.1.2. 交流接触器

TECH530、TECH530A 和 TECH530C 主机使用交流接触器作为加热控制,可直接由主机上继电器控制接触器,但需注意在接触器控制线圈上并联一突波吸收器。

交流接触器 (Electromagnetic Contactor)

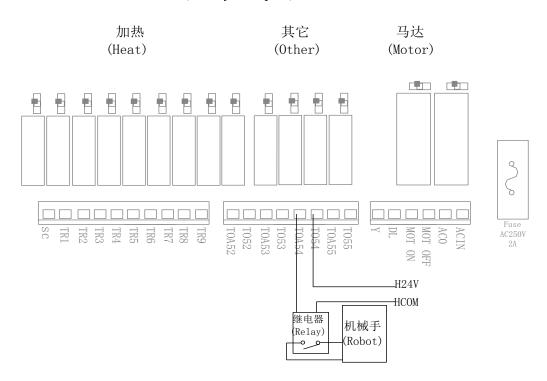

5.7.2. TECH580 温度控制装配

TECH580 系统温度模块提供 12 点 DC24V 晶体管输出控制,单点输出最大电流为 1. 2A,共享点为+24V,即低电平有效。13pin 端子上的+24V 接点为输出共享点,供负载接线使用,非电源接入点。

如使用固态继电器作为加热控制,可直接由温度模组控制固态继电器,但需注意固态继电器分 AC 端与 DC 端,其中 DC 端有正负极性分别。(推荐使用控制方式)

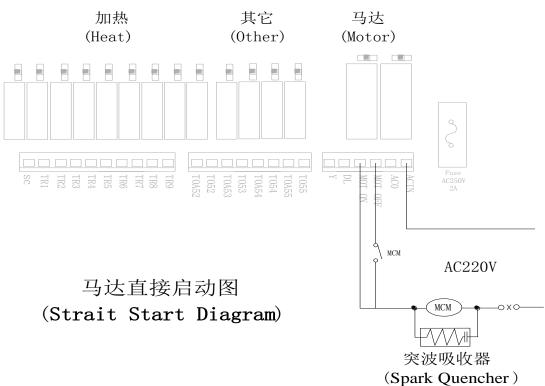
如使用电磁接触器作为加热控制,需经中间继电器转接再控制接触器,但需注意在接触器线圈上并联一突波吸收器。

下图以固态继电器控制方式为例:



5.8. 继电器控制输出装配

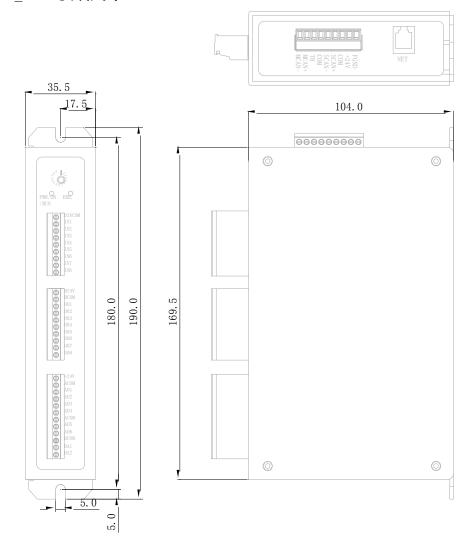
5.8.1. TECH530 继电器控制装配


TECH530 主机板上提供 15 组继电器输出接点供客户使用,包含马达启动,马达停止,电热控制等功能控制,其中 4 组继电器输出接点供机械手或润滑功能控制。下图为普通机械手装配示例。

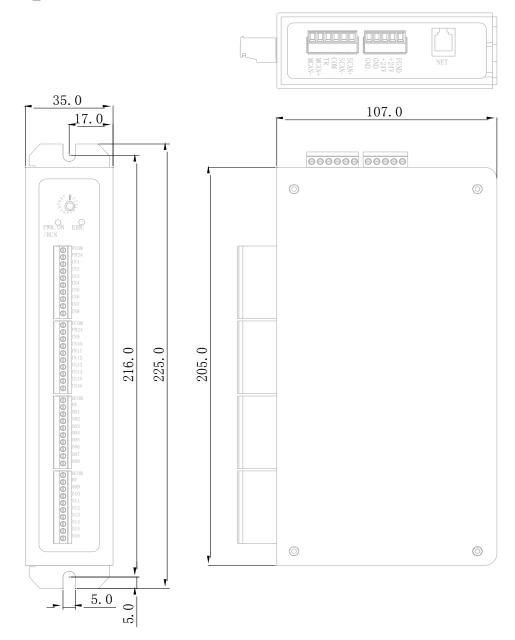
继电器输出 15组 (Relay Output)

5.8.2. TECH530 马达直接启动装配

继电器输出 15组 (Relay Output)


六、 CAN 扩展模块

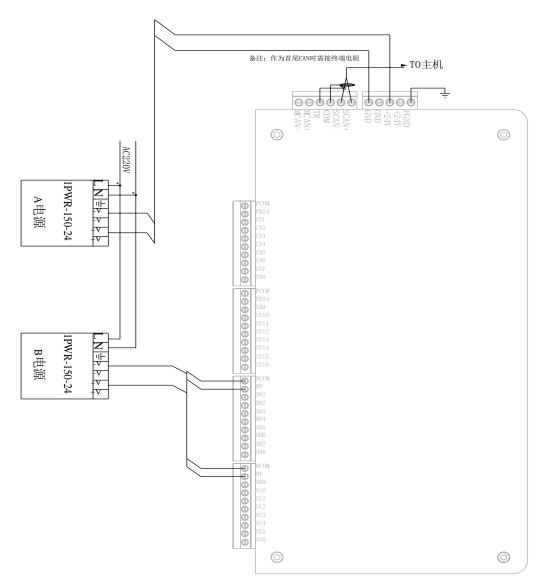
6.1. tmIoT_i101与tmIoT_i102


 $tmIoT_i101$ 和 $tmIoT_i102$ 是一装配简单,功能齐全的扩展卡,可通过与主机的 CAN 通讯进行远程 I0 点的扩展。

6.1.1. tmIoT_i101与 tmIoT_i102 安装尺寸

6.1.1.1. tmIoT_i101 安装尺寸

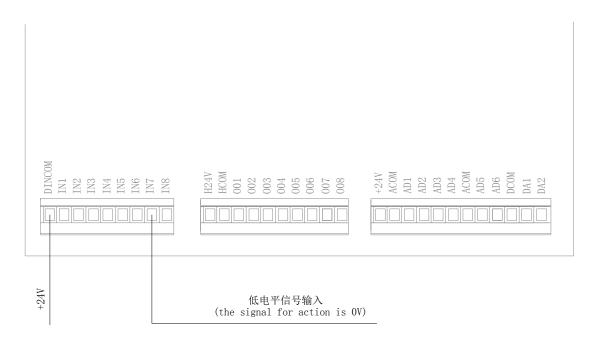
6.1.1.2. tmIoT_i102 安装尺寸


- 6.1.2. tmIoT_i101与 tmIoT_i102装配
- 6.1.2.1. 电源配线装配
- 6. 1. 2. 1. 1. tmIoT_i101

备注:

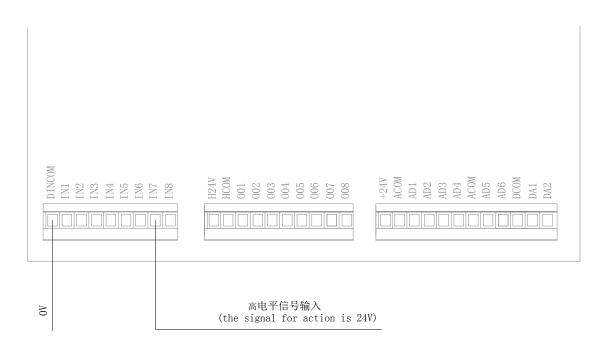
- a) 该扩展板需要接地,FGND 为接地线端子。
- b) 开关量输出(001~008)最大电流为50mA,不支持推方向阀。

6.1.2.1.2. tmIoT_i102



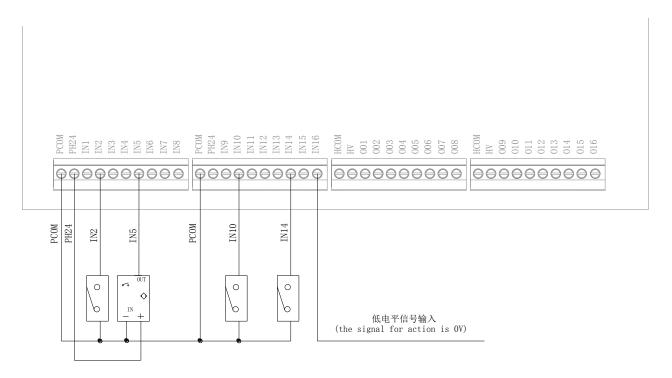
备注:

- a) 该扩展板需要接地,FGND 为接地线端子。
- b) 开关量输出(001~016)最大电流为 2.0 A。


6.1.2.2. 限位开关装配

- 6.1.2.2.1 tmIoT i101
 - a) 此系统提供 8 点限位开关检知 (IN1~IN8), 单点最大电流为 5mA。
 - b) 使用限位开关,当 LIMIT 动作 DINCOM 输入为 24V 时,即低电平有效,当 LIMIT 动作 DINCOM 输入为 0V 时,即高电平有效
 - c) 使用三线近接开关,其型号有 NPN 和 PNP 两种,可通过 DINCOM 输入信号电平选择。 NPN 型:

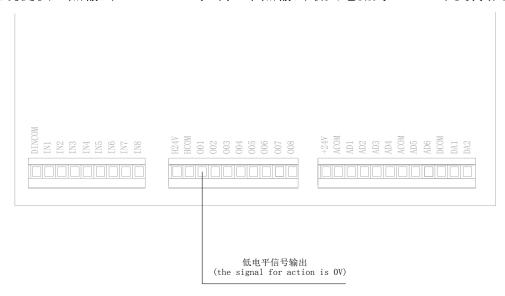
Digital Input 接线图


PNP 型:

Digital Input 接线图

6. 1. 2. 2. 1 tmIoT_i102

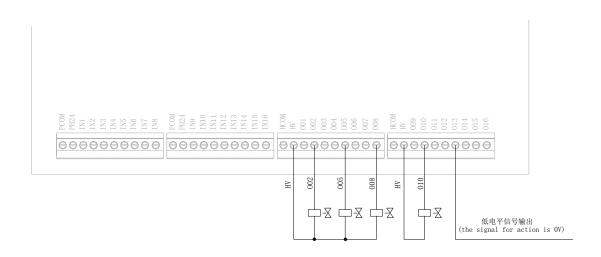
- a) tmIoT i102 系统提供 16 点限位开关检知 (IN1~IN16), 单点最大电流为 5mA。
- b) 使用限位开关,电源共享点为 PCOM,当 LIMIT 动作时 PCOM 即输入信号,即低电平有效。
- c) 限位开关端子上的 PCOM、PH24V 为输出电源共享点,具有限流保护设计,供负载接线使用,非电源输入接点。
- d) 使用三线近接开关, 其型号须为 NPN。



Digital Input 接线图

6.1.2.3. 输出控制装配

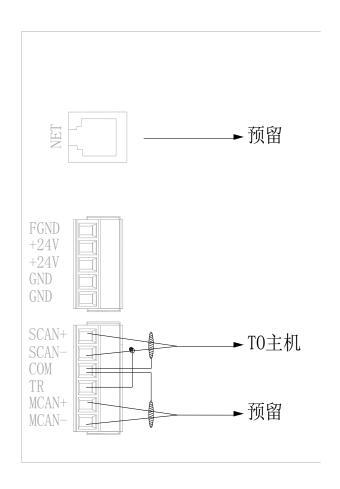
6.1.2.3.1. tmIoT i101


a) 此系统提供 8 点输出(001~008)控制,单点输出最大电流为 50mA,不支持推方向阀。

Digital Output 接线图

6. 1. 2. 3. 1. tmIoT_i102

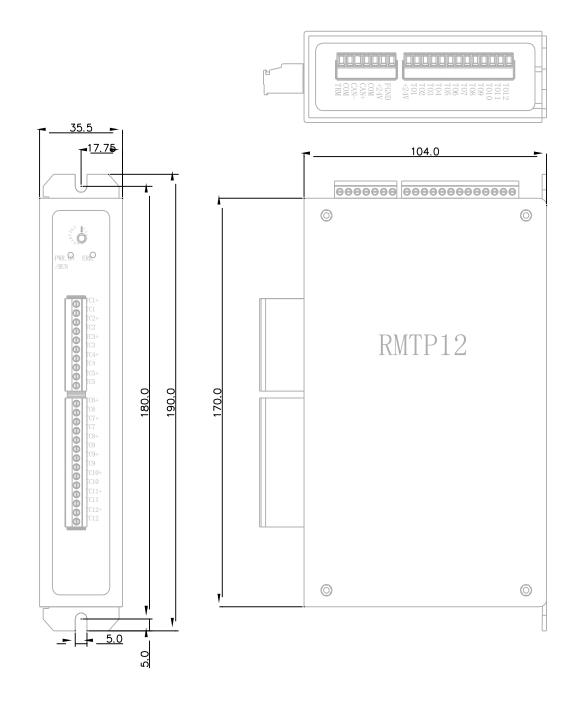
- a) 此系统提供 16 点输出 (001~0016) 控制,单点输出最大电流为 2.0A。
- b) 接 2 个 HCOM 时,可支持 24W*16 个阀同时开的电流回流。


Digital Output 接线图

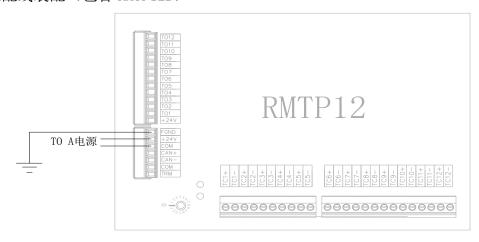
- 6.1.2.4. CAN 通讯装配
- 6.1.2.4.1. NET 接口

此系统提供1组NET接口,目前功能预留。

6.1.2.4.2. CAN BUS 接口


此系统提供2组CAN BUS 控制,其中SCAN接于主机,MCAN 功能预留。

6.2. RMTP12


RMTP12 是一装配简单,功能齐全的温度控制扩展卡,可通过与主机的 CAN 通讯进行远程温度扩展。可作为料温或模温的温度检测控制使用。

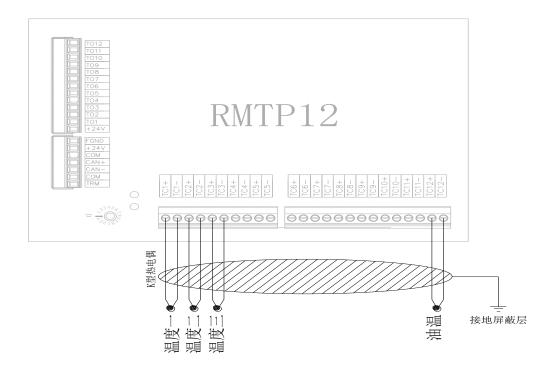
6.2.1. RMTP12 安装尺寸

6.2.2. RMTP12 装配

6.2.2.1. 电源配线装配(包含 RMTP12B)

备注:

a) 该扩展板需要接地,FGND 端子或外壳接地螺丝为接地端。

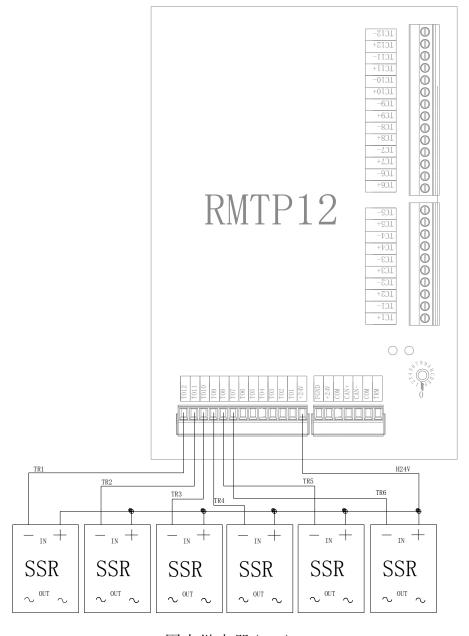

6.2.2.2. RMTP12 感温线装配

RMTP12 温度模块可通过 CAN 与主机进行通讯连接。感温线必须接于温度模块端子台,须照正(+)、负(-)极性接上 TC1-TC12 分别为 1-12 段感温线。

感温线布线必须与动力线等强电线分开,以免干扰造成温度不准、乱跳。

感温线请勿经过转接, 防止因转接影响温度准确性。

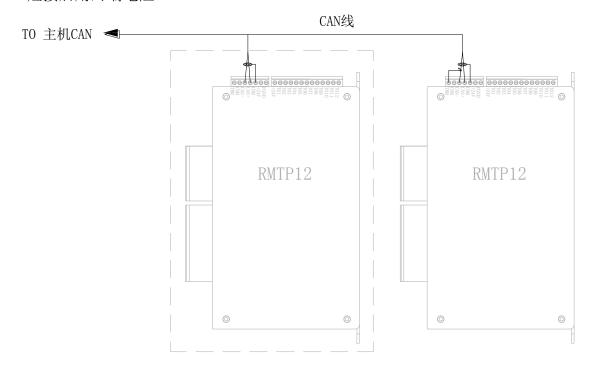
接地型热电偶外壳必须两端接地以防止温度干扰及乱跳。

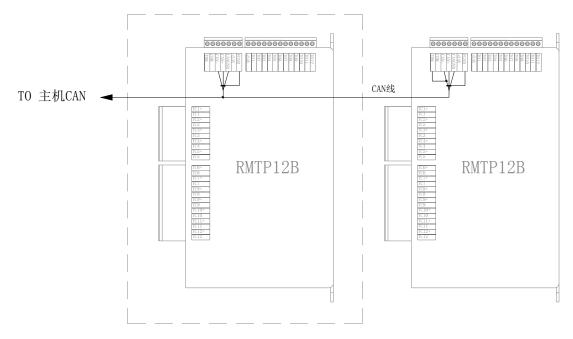


6.2.2.3. RMTP12 温度控制装配

RMTP12 温度模块提供 12 点 DC24V 晶体管输出控制,单点输出最大电流为 1. 2A,共享点为+24V,即低电平有效。13pin 端子上的+24V 接点为输出共享点,供负载接线使用,非电源接入点。

如使用固态继电器作为加热控制,可直接由温度模组控制固态继电器,但需注意固态继电器分 AC 端与 DC 端,其中 DC 端有正负极性分别。(推荐使用控制方式)

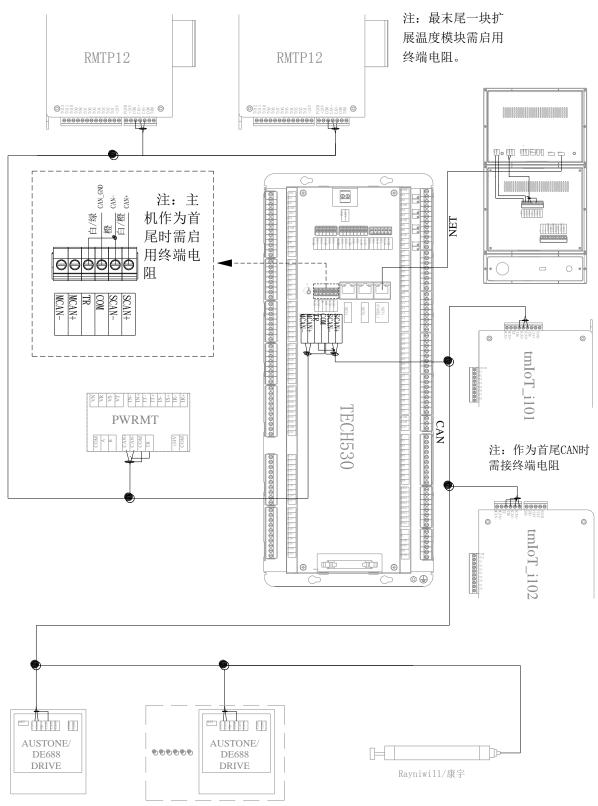

如使用电磁接触器作为加热控制,需经中间继电器转接再控制接触器,但需注意在接触器线圈上并联一突波吸收器。


固态继电器(SSR)

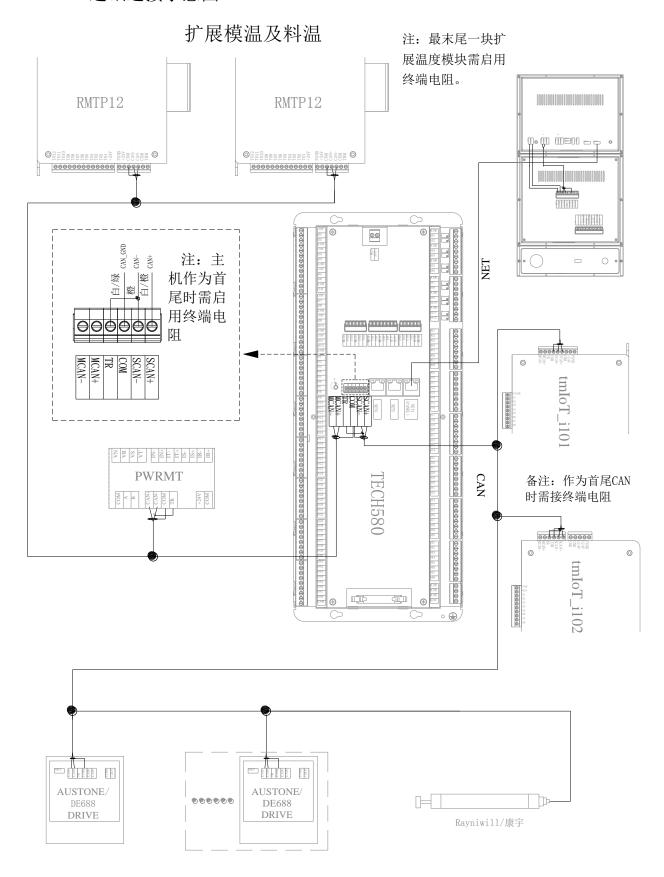
6.2.2.4. RMTP12 通讯装配

RMTP12 包含 RMTP12、RMTP12B 和 RMTP12C 三种模块,其中 RMTP12 模块是非隔离 CAN 接口,RMTP12B 和 RMTP12C 模块是隔离 CAN 接口。当模块位于 CANBus 末尾时,需将 TR 与 CAN-短接启用终端电阻。

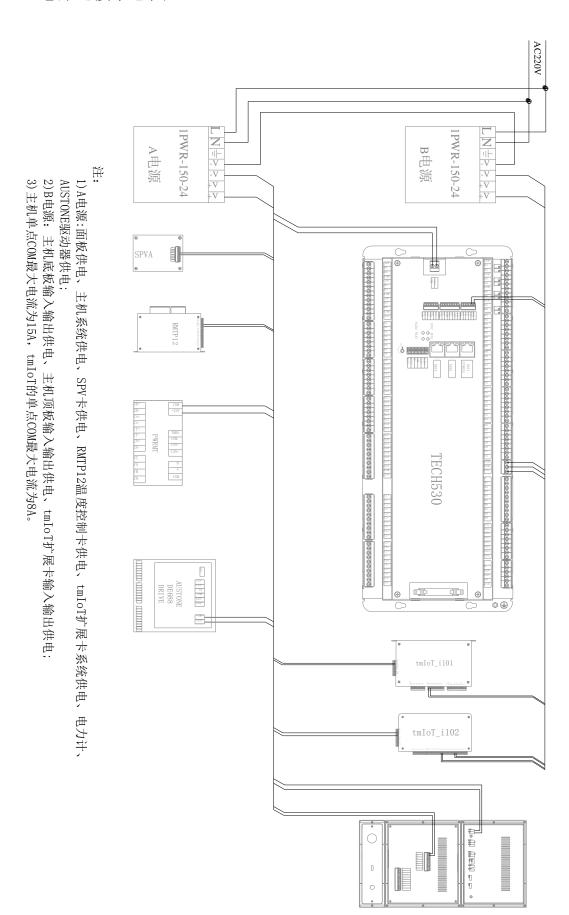
RMTP12 通讯示意图(非隔离 CAN)



RMTP12B 和 RMTP12C 通讯示意图 (隔离 CAN)


七、系统附图

TECH530 通讯连接示意图


扩展模温及料温

TECH580 通讯连接示意图

TECH530 电源连接示意图

